Influenza Viral Membrane Deformation due to Re- folding of HA-protein: Two-dimensionalModel and Analysis

نویسندگان

  • Naveen K. Vaidya
  • Huaxiong Huang
چکیده

In this paper we study influenza viral membrane deformation related to the refolding of Hemagglutinin (HA) protein. The focus of the paper is to understand membrane deformation and budding due to experimentally observed linear HA-protein clusters, which have not been mathematically studied before. The viral membrane is modeled as a two dimensional incompressible lipid bilayer with bending rigidity. For tensionless membranes, we derive an analytical solution while for membrane under tension we solve the problem numerically. Our solution for tensionless membranes shows that the height of membrane deformation increases monotonically with the bending moment exerted by HA-proteins and attains its maximum when the size of the protein cluster reaches a critical value. Our results also show that the hypothesis of dimple formation proposed in the literature is valid in the two dimensional setting. Our comparative study of axisymmetric HA-clusters and linear HA-clusters reveals that the linear HA-clusters are not favorable to provide a sufficient energy required to overcome an energy barrier for a successful fusion, despite their capability to cause membrane deformation and budding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling HA-protein mediated interaction between an influenza virus and a healthy cell: prefusion membrane deformation

We present a mathematical model for pre-fusion interaction between an influenza virus and a healthy cell. The model describes the role of the force exerted by Hemaglutinin (HA) protein clusters in bringing the viral membrane in close contact with the host cell membrane, as a first step of the fusion process between the two membranes. We model the viral membrane as a lipid bilayer whose shape en...

متن کامل

Molecular Identification of Pre-Existing Immunityin Human against H9N2 Influenza Viruses Using HLA-A*0201 Binding Peptides

Background and Aims: The contribution genetic and antigenic diversity of H9N2 influenza viruses in evading from immune responses, cytotoxic T lymphocytes (CTL) epitopes in hemagglutinin (HA) protein restricted by HLA binding peptides was identified. Materials and Methods: Phylogenetic analyses were carried out for all of full length HA and deduced amino acid sequences of H9N2 viruses available ...

متن کامل

Anti-influenza Activity of a Novel Polyoxometalate Derivative (POM-4960)

There are many effective chemothereutic agents used in influenza disease which some of them inhibit virus replication by interfering with FluV (influenza virus) viral binding or its penetration into cell membrane. A series of polyoxometalates compounds such as POM-523 and PM-504 have been synthesized and have showed inhibitory effects on viruses. In this study we examined anti influenza activit...

متن کامل

Caspase Cleavage Motifs of Influenza Subtypes Proteins: Alternations May Switch Viral Pathogenicity

Background and Aims: The caspases are unique proteases that mediate the host cell apoptosis during viral infection. In this study, we identified the caspase cleavage motifs of H5N1 and H9N2 influenza viruses isolated during 1998-2012. Materials and Methods: Amino acid sequences of the eleven proteins encoded by the viruses as the caspase substrates downloaded from NCBI. The caspase cleavage mot...

متن کامل

Influenza virus assembly and budding.

Influenza A virus causes seasonal epidemics, sporadic pandemics and is a significant global health burden. Influenza virus is an enveloped virus that contains a segmented negative strand RNA genome. Assembly and budding of progeny influenza virions is a complex, multi-step process that occurs in lipid raft domains on the apical membrane of infected cells. The viral proteins hemagglutinin (HA) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009